294 research outputs found

    Inductive monitoring system constructed from nominal system data and its use in real-time system monitoring

    Get PDF
    The present invention relates to an Inductive Monitoring System (IMS), its software implementations, hardware embodiments and applications. Training data is received, typically nominal system data acquired from sensors in normally operating systems or from detailed system simulations. The training data is formed into vectors that are used to generate a knowledge database having clusters of nominal operating regions therein. IMS monitors a system's performance or health by comparing cluster parameters in the knowledge database with incoming sensor data from a monitored-system formed into vectors. Nominal performance is concluded when a monitored-system vector is determined to lie within a nominal operating region cluster or lies sufficiently close to a such a cluster as determined by a threshold value and a distance metric. Some embodiments of IMS include cluster indexing and retrieval methods that increase the execution speed of IMS

    A diagnosis system using object-oriented fault tree models

    Get PDF
    Spaceborne computing systems must provide reliable, continuous operation for extended periods. Due to weight, power, and volume constraints, these systems must manage resources very effectively. A fault diagnosis algorithm is described which enables fast and flexible diagnoses in the dynamic distributed computing environments planned for future space missions. The algorithm uses a knowledge base that is easily changed and updated to reflect current system status. Augmented fault trees represented in an object-oriented form provide deep system knowledge that is easy to access and revise as a system changes. Given such a fault tree, a set of failure events that have occurred, and a set of failure events that have not occurred, this diagnosis system uses forward and backward chaining to propagate causal and temporal information about other failure events in the system being diagnosed. Once the system has established temporal and causal constraints, it reasons backward from heuristically selected failure events to find a set of basic failure events which are a likely cause of the occurrence of the top failure event in the fault tree. The diagnosis system has been implemented in common LISP using Flavors

    An integrated approach to system design, reliability, and diagnosis

    Get PDF
    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized

    Monitoring by Use of Clusters of Sensor-Data Vectors

    Get PDF
    The inductive monitoring system (IMS) is a system of computer hardware and software for automated monitoring of the performance, operational condition, physical integrity, and other aspects of the health of a complex engineering system (e.g., an industrial process line or a spacecraft). The input to the IMS consists of streams of digitized readings from sensors in the monitored system. The IMS determines the type and amount of any deviation of the monitored system from a nominal or normal ( healthy ) condition on the basis of a comparison between (1) vectors constructed from the incoming sensor data and (2) corresponding vectors in a database of nominal or normal behavior. The term inductive reflects the use of a process reminiscent of traditional mathematical induction to learn about normal operation and build the nominal-condition database. The IMS offers two major advantages over prior computational monitoring systems: The computational burden of the IMS is significantly smaller, and there is no need for abnormal-condition sensor data for training the IMS to recognize abnormal conditions. The figure schematically depicts the relationships among the computational processes effected by the IMS. Training sensor data are gathered during normal operation of the monitored system, detailed computational simulation of operation of the monitored system, or both. The training data are formed into vectors that are used to generate the database. The vectors in the database are clustered into regions that represent normal or nominal operation. Once the database has been generated, the IMS compares the vectors of incoming sensor data with vectors representative of the clusters. The monitored system is deemed to be operating normally or abnormally, depending on whether the vector of incoming sensor data is or is not, respectively, sufficiently close to one of the clusters. For this purpose, a distance between two vectors is calculated by a suitable metric (e.g., Euclidean distance) and "sufficiently close" signifies lying at a distance less than a specified threshold value. It must be emphasized that although the IMS is intended to detect off-nominal or abnormal performance or health, it is not necessarily capable of performing a thorough or detailed diagnosis. Limited diagnostic information may be available under some circumstances. For example, the distance of a vector of incoming sensor data from the nearest cluster could serve as an indication of the severity of a malfunction. The identity of the nearest cluster may be a clue as to the identity of the malfunctioning component or subsystem. It is possible to decrease the IMS computation time by use of a combination of cluster-indexing and -retrieval methods. For example, in one method, the distances between each cluster and two or more reference vectors can be used for the purpose of indexing and retrieval. The clusters are sorted into a list according to these distance values, typically in ascending order of distance. When a set of input data arrives and is to be tested, the data are first arranged as an ordered set (that is, a vector). The distances from the input vector to the reference points are computed. The search of clusters from the list can then be limited to those clusters lying within a certain distance range from the input vector; the computation time is reduced by not searching the clusters at a greater distance

    INDUCTIVE SYSTEM HEALTH MONITORING WITH STATISTICAL METRICS

    Get PDF
    Model-based reasoning is a powerful method for performing system monitoring and diagnosis. Building models for model-based reasoning is often a difficult and time consuming process. The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS processes nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. In particular, a clustering algorithm forms groups of nominal values for sets of related parameters. This establishes constraints on those parameter values that should hold during nominal operation. During monitoring, IMS provides a statistically weighted measure of the deviation of current system behavior from the established normal baseline. If the deviation increases beyond the expected level, an anomaly is suspected, prompting further investigation by an operator or automated system. IMS has shown potential to be an effective, low cost technique to produce system monitoring capability for a variety of applications. We describe the training and system health monitoring techniques of IMS. We also present the application of IMS to a data set from the Space Shuttle Columbia STS-107 flight. IMS was able to detect an anomaly in the launch telemetry shortly after a foam impact damaged Columbia's thermal protection system

    General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    Get PDF
    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring

    Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning

    Full text link
    Although aviation accidents are rare, safety incidents occur more frequently and require a careful analysis to detect and mitigate risks in a timely manner. Analyzing safety incidents using operational data and producing event-based explanations is invaluable to airline companies as well as to governing organizations such as the Federal Aviation Administration (FAA) in the United States. However, this task is challenging because of the complexity involved in mining multi-dimensional heterogeneous time series data, the lack of time-step-wise annotation of events in a flight, and the lack of scalable tools to perform analysis over a large number of events. In this work, we propose a precursor mining algorithm that identifies events in the multidimensional time series that are correlated with the safety incident. Precursors are valuable to systems health and safety monitoring and in explaining and forecasting safety incidents. Current methods suffer from poor scalability to high dimensional time series data and are inefficient in capturing temporal behavior. We propose an approach by combining multiple-instance learning (MIL) and deep recurrent neural networks (DRNN) to take advantage of MIL's ability to learn using weakly supervised data and DRNN's ability to model temporal behavior. We describe the algorithm, the data, the intuition behind taking a MIL approach, and a comparative analysis of the proposed algorithm with baseline models. We also discuss the application to a real-world aviation safety problem using data from a commercial airline company and discuss the model's abilities and shortcomings, with some final remarks about possible deployment directions

    Method of Testing and Predicting Failures of Electronic Mechanical Systems

    Get PDF
    A method employing a knowledge base of human expertise comprising a reliability model analysis implemented for diagnostic routines is disclosed. The reliability analysis comprises digraph models that determine target events created by hardware failures human actions, and other factors affecting the system operation. The reliability analysis contains a wealth of human expertise information that is used to build automatic diagnostic routines and which provides a knowledge base that can be used to solve other artificial intelligence problems
    corecore